Developmental Biology and Congenital Anomalies Branch (DBCAB)
Overview/Mission
DBCAB, formerly known as the Developmental Biology and Structural Variation Branch, focuses on deciphering the biological causes of structural congenital anomalies. Understanding the etiology of these errors in embryonic development provides the most promising route for improving prevention, diagnosis, and implementation of evidence-based treatments for patients and families affected by these rare diseases and conditions.
In addition to studies focused on identifying and elucidating the roles of gene variants, environmental perturbations, and other factors causing structural congenital anomalies, DBCAB supports studies to advance our understanding of the fundamental processes underlying formation and differentiation of the embryo. This basic knowledge is crucial for understanding how the process of embryogenesis can go awry.
Major program areas for the branch include early embryonic development and differentiation, biophysics/biomechanics of development, developmental neurobiology, organogenesis, regeneration, regenerative medicine, systems developmental biology, and developmental genetics, including genomic analysis of human structural congenital anomalies. The branch also administers the Gabriella Miller Kids First Pediatric Research Program, led by the NIH Common Fund, as well as NIH-wide coordination of research on congenital anomalies.
Biophysics/Biomechanics of Development: Examines how biophysical forces and mechano-transduction contribute to morphogenetic events regulating embryonic development and patterning
Developmental Genetics and Genomics: Identifies and characterizes the genes, genetic networks, and epigenetic factors that control developmental processes to understand how alterations in them lead to structural congenital anomalies
Developmental Neurobiology: Examines mechanisms that control the early pattern of the developing nervous system, neurogenesis, differentiation, axonal guidance, neural crest differentiation and migration, and neural tube formation and defects
Early Embryonic Development: Seeks to explain the cellular and molecular mechanisms directing the zygote to establish the embryonic plan for developing a complex, multicellular organism
Organogenesis: Studies mechanisms underlying typical development of organ primordia against which aberrations can be better understood
Regenerative Biology: Examines key biological events underlying tissue regeneration by supporting research in model organisms
Stem Cell Biology: Promotes research on basic stem cell biology essential for creating therapeutic opportunities to maximize functional integration and clinical recovery
Systems Developmental Biology: Links isolated molecular and mechanistic descriptions of developmental processes into a foundational framework
Congenital Anomalies Initiative: Aims to capitalize on genomic and other biomedical discoveries to further understand the mechanisms responsible for structural congenital anomalies and increase collaborations between basic, translational, and clinical researchers
Gabriella Miller Kids First Pediatric Research Program (Kids First): NIH-wide program supported through the NIH Common Fund and administered by DBCAB that fosters collaborative research to uncover the causes of childhood cancers and congenital anomalies and support data sharing with the pediatric research community
Kids First Data Resource Portal: An interoperable data resource that enables cloud-based access, discovery, and analysis of whole genome sequences to accelerate collaborative pediatric research leading to improved prevention, diagnosis, and treatments for patients and their families with congenital anomalies or childhood cancers; the branch also funds community resources, animal model systems, research tool development, and training to facilitate the efforts of developmental biology researchers
Maranke I. Koster, Branch Chief Main Research Areas: Congenital anomalies; stem cell biology; lineage differentiation; developmental biology
Deborah Henken, Deputy Chief Main Research Areas: Developmental neurobiology; neural tube development and neural tube defects; axonal guidance, neuronal lineage, and differentiation; neural crest development and migration
Marcia Fournier, Program Official, Program Manager Main Research Areas: Gabriella Miller Kids First Pediatric Research Program
Mahua Mukhopadhyay, Program Official Main Research Areas: Early embryonic development, including energy metabolism/metabolomics during development and the biophysics and biomechanics of development; stem cell biology; differentiation and integration mechanisms; regeneration biology
Katie Stein, Program Official Main Research Areas: Developmental genetics and genomics; systems development biology
Reiko Toyama, Program Official Main Research Areas: Organogenesis; structural congenital anomalies, excluding neural tube defects
Some recent findings from DBCAB-supported researchers include the following:
The Gene Ontology knowledgebase in 2023. This comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs) covers organisms and viruses and includes three components: a computational knowledge structure describing functional characteristics, annotations, and mechanistic models of molecular pathways. (PMID: 36866529)
Reconstruction and deconstruction of human somitogenesis in vitro. This research demonstrates that major patterning modules involved in somitogenesis, including the clock and wavefront, anteroposterior polarity patterning and somite epithelialization, can be dissociated and operate independently within in vitro systems. (PMID: 36543321)
Evolutionary divergent mTOR remodels translatome for tissue regeneration. Rapid activation of protein synthesis during injury response plays a crucial role in axolotl limb regeneration. The mTORC1 pathway is a key signal that mediates tissue regeneration and translational control in axolotls. An axolotl mTOR protein was engineered in human cells, inducing a state supporting rapid protein activation. This study provides another missing link in our understanding of vertebrate regenerative potential. (PMID: 37495694)