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INTRODUCTION 
 
Measuring and mapping the diffusion tensor distribution (DTD) via MRI holds the promise of revealing 
the tissue microstructure at sub-voxel resolution. Recent approaches have used the covariance of 
diffusion tensor as a means to characterize DTD within a voxel [1], [2]. It can be shown that several 
terms in the covariance matrix are not observable when using standard rank-1 b-matrix acquisition 
schemes using single pulsed field gradient (PFG) MR sequences, emphasizing the need for higher-rank 
b-matrix acquisitions for DTD imaging. Several pulse sequences have been introduced for higher-rank 
b-matrix encoding [2]–[4] but their applicability is limited by their long echo times and/or the lack of 
well-defined diffusion times. A new efficient, easy to implement b-matrix encoding strategy is presented 
which is capable of generating ranks 1, 2 and 3 b-matrices with well-defined diffusion times. The 
presented method is also immune to concomitant field errors which are thought to confound DTD 
estimation [5]. The developed method is tested on a macroscopic and microscopically isotropic 
polydimethylsiloxane (PDMS) phantom, and on excised rat brain tissue.  
 
METHODS 
 
The higher-rank b-matrices were obtained by simply embedding a standard triple PFG pulse sequence in 
a single spin-echo EPI sequence (Figure 1). The six diffusion gradient lobes of equal duration were 
balanced around the 180° RF pulse to mitigate the concomitant field effects [6]. The three q-vectors in 
the diffusion block were randomly oriented and distributed uniformly over a unit sphere; their 
amplitudes were randomly varied to obtain a range of b-values. The sampled b-matrices displayed as 
ellipsoids along with the histogram of b-values are shown in Figure 2.  
 
MRI data were acquired on a 7T vertical Bruker wide-bore AvanceIII MRI system (Bruker Biospin, 
Billerica, MA) equipped with a Micro2.5 microimaging probe and three GREAT60 gradient amplifiers. 
The pulse sequence was calibrated using a 3.9 cSt cyclic PDMS phantom in a 5-mm NMR tube using 
the following parameters: 𝛿 = 3 ms, Δ = 32 ms, TR/TE = 3000/55 ms with a spatial resolution of 100 µm 
in-plane resolution and 2-mm slice thickness. A total of 150 different b-matrices were acquired as shown 
in Figure 2 resulting a b-value ranging from 0 – 35,000 s/mm2. Rat brain data were acquired with 
identical diffusion gradients but with 3D spatial encoding resulting in a TR/TE = 1000/78 ms and 100 
µm in-plane spatial resolution with 1 mm resolution in the third dimension.    
 
A multi-normal distribution constrained within the manifold of positive semi-definite diffusion 
tensors,	ℳ', was assumed as the DTD. This new model predicts a monotonically decreasing signal 
attenuation with increasing b-value consistent with the observed MR signal unlike the higher-order 
cumulant [2] or kurtosis [7] models. This new model is based on the application of the central limit 



theorem, which is justified by the large voxel size of typical MRI scans and the large number of micro-
voxels they may contain. The resulting signal model is given by, 
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where 𝒃 is a b-matrix, 𝑫2  is a 2nd-order mean diffusion tensor (both transformed into 6 x 1 vectors), Σ is 
the 4th-order covariance tensor transformed into a 6 x 6 matrix [1], and 𝑍 is the partition function given 
by, 
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The mean and covariance were estimated by fitting the acquired data to this model using a nonlinear 
least-squares (NNLS) routine. An isotropic covariance tensor with 2 parameters was assumed for 
analyzing both the PDMS and rat brain data. Given the mean and covariance of the DTD, microscopic 
quantities such as 𝜇𝐹𝐴 and 𝜇𝐴𝐷 are computed using the following relation inspired from [8], 
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where 𝑓 is the function of interest for example corresponding to 𝐹𝐴 or 𝐴𝐷.  
   
RESULTS AND DISCUSSION 
 
The results obtained from the PDMS data are shown in Figure 3. The average diffusivity of PDMS was 
0.172 µm4/ms at 15°C consistent with published results [9]. The DTD obtained by picking samples 
from the constrained multinormal distribution with estimated mean and covariance at the center voxel 
was approximately spherical as shown in Figure 3 with small deviations due to measurement 
uncertainty. The FA and 𝜇𝐹𝐴 maps were close to zero consistent with the DTD being a delta function. 
The 𝜇𝐴𝐷 and macro-AD maps are the same, as expected, since the average diffusivity operator is linear 
and can be commuted.  The results from the rat brain data are shown in Figures 4 and 5. FA and μFA 
was high and equal in corpus callosum as expected. μFA was high in brainstem and cerebellum perhaps 
due to their heterogeneous microstructure. The plot of the signal vs b-value using various models based 
on the estimated DTD (Figure 5) shows the kurtosis and cumulant models fail around b = 15,000 
s/mm2 in corpus callosum showing its limitation. 
 
CONCLUSION 
 
A new b-matrix encoding strategy is introduced to estimate mean and covariance tensors of a new DTD 
model, which is easy to implement, efficient, and immune from concomitant field artifacts. The MRI 
pulse sequences retain well-defined diffusion and mixing times and pulsed gradient durations, which can 
be used to probe the DTD’s possible time-dependence systematically.  
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FIGURES 
 

 
Figure 1: Triple PFG MRI pulse sequence used for DTD data acquisition. The three diffusion gradient pairs of equal duration,d, are labeled 
as G1, G2 and G3 separated by the diffusion time, D. Individual diffusion gradient pairs can be turned OFF to obtain b-matrix with rank 1, 
2, or 3. 

 

 
Figure 2: Experimental design showing the prescribed b-matrices shown using ellipsoids (left) and the distribution of b-values (right) they 
produce, obtained by randomizing the q-vector orientation, distributed uniformly over a sphere, and randomly chosen amplitudes.  



 

 

Figure 3: Results from the PDMS phantom showing the estimated parametric maps. S0 – Non-diffusion weighted MRI, FA - fractional 
anisotropy map, µFA - microscopic FA map, ADC - apparent diffusion coefficient, µADC - microscopic ADC maps and the estimated DTD 
inside a voxel at the center of the tube. The units for ADC and µADC are in µm2/ms.  

 



 
Figure 4: Results from the rat brain data showing the estimated parametric maps. S0 – Non-diffusion weighted MRI, FA - fractional 
anisotropy map, μFA - microscopic FA map, ADC - apparent diffusion coefficient, μADC - microscopic ADC maps. The units for ADC and 
μADC are in μm2/ms. 
 



 
Figure 5 Estimated DTD in a voxel in corpus callosum and cerebral cortex. The mean tensor is shown using an ellipsoid while the 4th order 
covariance tensor is shown using a glyph obtained by tensor contraction. The signal curve for different models based on the estimated 
mean and covariance is also shown. 
 

 
 


