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INTRODUCTION 
Assessing noise-induced signal variance is important in many MRI applications  such as instrumentation quality control, image segmentation, estimation  
of quantitative parameters from MR data,  and functional MRI. Signal variance,  σ2 , can be estimated from the noise variance,  σ2 

noise , in a region of the 

image containing no object [1, 2]. Extracting the background from the image can be done using automated segmentation. However, the background of 
MR images, particularly those acquired using echo planar imaging techniques, are rarely free from ghosts and other artifacts. Another approach takes 
into account that the magnitude MR image measurement can be characterized by a Rayleigh distribution at zero signal to noise [3]. The mean and 
variance of the noise in the background of magnitude reconstructed images can thus be estimated by fitting the Rayleigh distribution to estimate the 
probability density function of the data. However, this implementation is susceptible to local optima encountered during the non-linear data fitting 
procedure. Additionally, because typical MR images have a bimodal or multi-modal distribution containing a mixture of background and foreground 
values, determining where to fit the distribution to the histogram is not trivial. Another clever approach for estimating the signal variance in MR images is 
the so called double acquisition method [4]. This approach, however, requires two identical images (with the exception of noise) which are difficult to 
obtain in practice because of motion that may occur between two different acquisitions. Moreover, artifacts such as ghosting, magnetic susceptibility 
induced distortions, etc., may not be exactly reproducible in two separate acquisitions. We propose a novel approach for automatically estimating the 
noise-induced signal variance in magnitude reconstructed MR images, which overcomes shortcomings associated with the methods mentioned above. 

METHODS 
Let  Ar and Ai be the real  and imaginary  data corrupted by  Gaussian distributed noise with zero mean  
and standard d eviation σ .  The probability density function (pdf)  of the magnitude reconstructed data,  

A = Ar + Ai , is given by  a Rician  distribution (1) where  M is the magnitude image intensity and β0 is  

the zeroth-order Bessel function of the first kind.  
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At low signal to noise (S/N), this  distribution  
approaches the Rayleigh distribution (2) with mean M = σ π / 2 and variance σ2 = (2 − π / 2)σ2

noise . 
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At  

high  S/N, the  noise distribution  approaches a Gaussian  distribution (3) with mean  M = A2 + σ2 and 

variance σ2 = σ 2 
noise .
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Note that the value of M for which p(M) in (2) is maximum is equal to σ . This finding can be easily checked by differentiating (2) with respect to M, 
setting the result equal to zero, and solving for M (4).

∂p(M) 1 −M2 /(2σ2) M −2M −M2 /(2σ2)= e + ( )e =0   (4) 2 2 2σ σ σ∂M 2

This information can be used to  extract the standard deviation  of the signal intensity σ  in the  
images by simply identifying the peak of the noise distribution. We use the kernel or the Parzen density estimator [5] for this purpose, the most popular 
technique for nonparametric density estimation. The choice of basis function is not very important so long as it is smooth and bell-shaped [5]. We chose 
the Gaussian kernel because it is easy to manipulate and derive. The kernel size or window width is very important and sometimes is adapted to the 
application. There is a trade-off between too much variability on one hand (if the window width is too small) and increased bias on the other (if it is too 
large). The window width can be computed by minimizing the mean square error between the true and estimated density. In our simulation, we set the 
window width equal 1.06*(sample standard deviation)*n-1/5  where n is the sample size as suggested in [5]. We created synthetic images containing 
different size objects and added Gaussian distributed noise in quadrature to simulate images with different S/N. Our objective is to test the accuracy of 
the proposed method. 

RESULTS  
Figure  1  shows the simulation result  on the  amount  of background required for the proposed method  
to properly  estimate the peak  of the noise distribution.  If the error of the estimated signal standard 
deviation is set within  10%,  65%  of the background  in  an image is required when  S/N =3,  22% is  
required when  S/N=4,  and  only a small  amount  of background is  needed when S/N  ≥ 5. In general,  
more background would provide a better result. If the background is less  than required, for example,  
less  than  60% when  S/N=3, the estimated signal standard deviation is  somewhat  over-estimated.  This  
is understandable because the noise  distribution is  contaminated by  the “object signal” and the mixture  
of noise  and  object  signal will always cause the  estimated peak to be shift to the right.
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Fig. 1 The background required for the kernel 
estimator to properly estimate the signal standard 
deviation (0.9σ < σestimated < 1.1σ) from an image 
(512*512). 

We use echo-planar  diffusion weighted images as  a test  application. We carefully  chose 30 regions  
manually from the background and compute the average of variance from those regions.  Our  
preliminary result shows that  the estimated signal variance  using the Parzen window approach  has  
similar results when compared with this  conventional  estimation (has the error rate within 10% in  our  
testing  data sets).  Simulations with artifacts will be conducted  to further verify  our preliminary findings.  
 
CONCLUSION 
An automatic method for estimating  the  signal variance in magnitude reconstructed MRI is presented.  
This  method needs only one image, does not  require any user  interaction as no  background  pixels  
need  to be  selected, and  does not require prior brain segmentation.  The result is promising when  compared  
with the  conventional manual  object-free background selection.  
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