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1. Introduction 
It is now well established that the MR measurement of an effective diffusion tensor of 

water using other imaging modalities. This information includes parameters that help characterize 
tissue composition, the physical properties of tissue constituents, tissue microstructure and its 
architectural organization. Moreover, this assessment is obtained non-invasively, without 
requiring exogenous contrast agents. 

Here we examine several well-known useful MR parameters derived from the effective 
diffusion tensor, such as the Trace as well as familiar measures of diffusion anisotropy and several 
new parameters and strategies for extracting additional structural and physiological information 
from diffusion weighted imaging data. 

2. Characterizing Diffusion in Biological Systems 
In tissues such as brain gray matter, where the measured apparent diffusivity is largely 

independent of the orientation of the tissue (i.e. isotropic), it is usually sufficient to characterize 
water diffusion with a single (scalar) apparent diffusion coefficient (ADC). However, in 
anisotropic media, such as skeletal and cardiac muscle (1) (2), (3) and in white matter (4) (5) (6) 
no single ADC can characterize the orientation-dependent water mobility in these tissues. The next 
most complex model that can describe anisotropic (i.e., dependent on the orientation of the tissue) 
diffusion is one that replaces the scalar ADC with a symmetric effective or apparent diffusion 
tensor, D ( e.g., see (7)). 

While the physical underpinnings of diffusion tensor NMR and MRI have been reviewed 
elsewhere (most recently in (8)), several new approaches to describing characteristics of 
anisotropic diffusion in tissues are described below, as well as interesting open research problems 
and questions relating to characterizing diffusion anisotropy: 

3. Quantitative Parameters Obtained by DT-MRI 
Quantitative parameters provided by diffusion tensor MRI can be obtained and explained 

using a geometric approach. Intrinsic quantities that characterize different unique features, for 
example, that describe the size, shape, orientation or pattern of diffusion ellipsoids within an 
imaging volume, can be found (9). Scalar parameters, functionally related to the diagonal and   
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off-diagonal elements of the diffusion tensor field, D(x,y,z), can also be displayed as an image. 
These quantities are rotationally invariant, i.e., independent of the orientation of the tissue 
structures, the patient's body within the MR magnet, the applied diffusion sensitizing gradients, 
and the choice of the laboratory coordinate system in which the components of the diffusion tensor 
and magnet field gradients are measured (10; 11). Some examples are given below. 

3.1 First Moment of the Diffusion Tensor Field 
The first moment of the diffusion tensor field, or the orientationally-averaged value of the 

diffusion tensor field can be calculated at each point within an imaging volume: 
<D> = Trace(D) / 3 = (Dxx + Dyy + Dzz) / 3 = (λ1 + λ2 + λ3) / 3 = < λ >  [1] 

Above, λi corresponds to eigenvalue i. Physically, an estimate of <D> can be obtained by taking 
the arithmetic mean of ADCs acquired uniformly in all directions (12). Integrating overall 
direction uniformly yields an intrinsic property of the tissue, which is independent of fiber 
orientation, gradient directions, etc. Recently, terms like "Trace-ADC", "Mean Trace", "Trace 
Mean", etc. have been used to signify <D>, however these terms are not meaningful. We suggest, 
as an alternative, the term 'bulk mean diffusivity'.  

Several interesting issues about the distribution of Trace(D) within tissues remain 
unresolved. For example, why is Trace(D) so uniform within the parenchyma of the normal adult 
brain. In particular, why is its value so similar in normal white and gray matter (13), even though 
these tissues are so different histologically? This spatial uniformity has contributed to the clinical 
utility of Trace(D) in disease assessment and monitoring since it often makes diseased regions 
more conspicuous when juxtaposed against the homogeneous background of normal brain 
parenchyma. A second reason that makes Trace(D) useful is that it appears so similar between and 
among normal adults. In fact, it appears to be quite similar across a range of normal mammalian 
brains including mice, rats, cats (14) (15), monkeys (16) and humans (13), (17). An open issue 
worth considering is whether the extracellular matrix of the mammalian brain is "designed" in a 
way to ensure Trace(D) lies within a narrow range of values, and if so, what is the underlying 
physiological purpose of this design requirement? 

3.2 Measures of Diffusion Anisotropy Using Higher Moments of the Diffusion Tensor Field 
The second and higher moments of D have been proposed for use as diffusion anisotropy 

measures because they characterize different ways in which the diffusion tensor field deviates from 
being isotropic (9). This approach has resulted in a number of diffusion anisotropy measures based 
upon the second moment of the distribution of the eigenvalues of D:  
(λ1 - <λ>)2 + (λ2 - <λ>)2 + (λ3 - <λ>)2, such as the Relative Anisotropy (RA), and the Fractional 
Anisotropy (FA) (9), which characterize the ratio of the anisotropic and isotropic parts of the 
diffusion tensor, and the fraction of the diffusion tensor that is anisotropic, respectively. The RA 
is just the coefficient of variation of the eigenvalues, which has been previously used in 
crystallography as an "aspherism coefficient" (18). Anisotropy measures based upon the higher 
moments of the diffusion tensor or the distribution of eigenvalues of D, such as the Skewness(λ) 
or Kurtosis(λ), could potentially be used to characterize diffusion anisotropy more completely, but 
MR noise make such measures unreliable. 
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3.3 Other Statistical Measures of Deviation from Isotropy of the Diffusion Tensor Field  
Another potential measure of diffusion anisotropy arises from considering isotropic 

diffusion or specifically measured deviations from it. For isotropic diffusion, D = D I where I is 
the identity tensor and D is the mean ADC. Then the standard anisotropic diffusion model reduces 
to (9):  

A = A0 e -b:DI = A0 e -Trace(b)D         [2] 
where A0 is the non-diffusion weighted signal and b is the b-matrix (19; 20) and “:” is the tensor 
dot product. For N DWI acquisitions, the normalized χ2 of the isotropic model is 

2−𝑇𝑟𝑎𝑐𝑒(𝑏 )𝐷
𝐴  − 𝐴  𝑒 𝑖

𝜒2 =   ∑𝑁 (
𝑖 0

𝑖𝑠𝑜 𝑖=1 )
𝜎𝑖

        [3] 

where Ai is the ith measured signal and σ 2i  is the associated error variance.   
The minimum χ2 for the isotropic diffusion model, χ 2iso , (or features of it, such as its p.d.f. 

or cumulative probability distribution) could provide a natural set of statistical measures of the 
degree of anisotropy having the following desirable properties: 1) χ 2iso  is orientationally invariant 
when the set of gradient directions are sampled isotropically. 2) χ 2iso  is a dimensionless quantity. 
3) χ 2iso  explicitly incorporates information about the SNR of the acquisition via a/ making χ 2iso  less 
sensitive to the acquisition scheme and experimental design. 4) χ 2iso  increases monotonically with 
the degree of anisotropy. 5) χ 2iso  is a normalized quantity whose value (or whose probability 
distribution) in each voxel can be meaningfully compared across platforms. 6) The parametric 
distribution of χ2 is known a priori, so parametric tests can be used to characterize its distribution 
within a voxel, ROI, or image. 7) Non-parametric tests, such as the bootstrap can also be used to 
assess the integrity of the DWI acquisitions using an empirically determined χ2 distribution 
obtained from the DWI data. 

Frank recently proposed the variance of ADCs measured along different isotropically 
sampled directions as a diffusion anisotropy measure (21). When the diffusion tensor is measured 
using the single tensor model at low-b values, this represents only a powder average of the 
underlying component tensors. This always causes the measured diffusion anisotropy to be 
underestimated. By calculating this variance using high b-value DWIs it appears possible to 
resolve two or more distinct fiber populations that may occupy a voxel. However, the variance of 
the ADC about its mean depends explicitly on many more details of the experiment (particularly, 
the noise level of the DWIs), and its design (e.g., the number of DWIs used, and the choice of 
gradient strength and directions) than χ 2iso . Also, since Frank's measure is the variance of a 
diffusion coefficient, it is not dimensionless. The statistics of the variance of the ADC are also not 
presently known. Finally, this measure was proposed specifically for a DWI acquisition scheme in 
which the gradient strengths are all uniform. No such constraint on the experimental design applies 
for the χ 2iso  measure above. 

However, it is important to note that any systematic errors in the acquisition of DWIs will 
increase the minimum χ 2iso  (or Frank's variance measure) making the material appear more 
anisotropic than it is. For example, distortion of DWIs by eddy currents, misregistration of DWIs 
by patient motion, or redistribution of signal intensity due to ghosting artifacts all make the set of 
DWls more inconsistent, increasing χ 2iso . In each case, the same tissue element no longer 
corresponds to the same voxel in each DWI, or the signal intensity of a particular element of. tissue 



ISMRM Workshop on Diffusion MRI: What Can We Measure? 
Saint-Malo, France, 10-12 March 2002 

Diffusion Tensor 

75 

is altered. Moreover, when there are different compartments occupying the same voxel, even two 
isotropic compartments, such as gray matter and CSF, then the isotropic model may also fail to 
describe the DWI data, particularly when many different gradient strengths are used. In this case, 
χ 2iso  will also be larger than if a single compartment were found in the voxel. Thus, a challenge in 
using a statistical measure of diffusion anisotropy, such as χ 2iso , is to be able distinguish the 
cause(s) of the departure from isotropy. 

3.4 Other Diffusion Anisotropy Measures 
Novel anisotropy measures have been proposed that are based on a "barycentric" 

representation of the diffusion tensor, in which it is decomposed into line-like, plane-like, and 
sphere-like tensors corresponding to diffusion ellipsoids that are prolate, oblate, and spherical, 
respectively (22) (23). The information provided by this approach should be compared 
systematically with the information contained in the first three moments of D—the mean, variance, 
and skewness. One issue that should be examined is the sensitivity of the barycentric representation 
to the order in which the eigenvalues of D are sorted. Whereas the statistical moments of D given 
above are insensitive to the order of the eigenvalues, dependence on their order renders quantities 
susceptible to a statistical bias caused when these eigenvalues are sorted (16). 

4. Characterizing Orientational Properties of the Diffusion Tensor Field 
Another important development in DT-MRI is the introduction of quantities that reveal 

architectural features of anisotropic structures, such as nerve fiber tracts in the human brain. 
Useful information can be gleaned from the directional pattern of diffusion ellipsoids within an 
imaging volume. Early on, it was proposed that in ordered fibrous tissues, the eigenvector 
associated with the largest eigenvalue within a voxel is parallel to the local fiber orientation (11). 
Imaging methods that apply this idea include direction field mapping, in which the local fiber 
direction is displayed as a vector in each voxel, and fiber-tract color mapping, in which a color, 
assigned to a voxel containing anisotropic tissue, is used to signify the local fiber tract direction 
(24) (25) (26) (27). 

5. Differential Geometry and Algebraic Features of the Diffusion Tensor Field 
A less intuitive, but powerful method of motivating and developing quantitative imaging 

parameters from DT-MRI data is by considering the differential geometry and algebraic properties 
of the diffusion tensor field itself, whose local features are sampled discretely in a DTMRI 
experiment. Until recently, this approach was only of academic interest since there was no practical 
method to obtain a continuous representation of a diffusion tensor field from the noisy, voxel-
averaged, discrete diffusion tensor data. However, this situation has changed with the advent of 
methods to construct such tensor field representations (28) (29) (30). For instance, this approach 
has led to new applications such as DT-MRI tractography, hyperstreamline and 
hyperstreamsurface imaging (31), connectivity analysis (32), and should lead to other innovations 
that were not previously feasible. 

For example, in structurally complex anisotropic media, such as the heart, which has a 
laminar architecture, one can also attempt to describe the deformation (curving, twisting, and 
bending) of the normal, rectifying, and osculating "sheets" formed by muscle and connective 
tissue. To do this, we can construct surfaces from the diffusion tensor field, which can be 
parametrized by two variables. Concepts of the differential geometry of surfaces (33) can then be 
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used to determine additional geometric features of sheet shape that can be calculated and displayed 
as intrinsic MRI parameters. These include the First and Second Fundamental Forms, I and II, and 
the normal, Gaussian, and mean curvatures (33). These parameters are intrinsic because they 
characterize different features of the local shape of the lamina, independent of the coordinate frame 
of reference, and constitute new parameters. 

6. Complexities in Describing Diffusion in Complex Media Like Tissue
For many of the reasons discussed above, the underlying cause of diffusion anisotropy has not 
been fully elucidated in brain parenchyma, although most investigators ascribe it to ordered, 
heterogeneous structures, such as large, oriented, extracellular and intracellular macromolecules, 
supermacromolecular structures, organelles, and membranes. In the central nervous system (CNS), 
diffusion anisotropy is not simply caused by myelin in white matter, since several studies have 
shown that even before myelin is deposited, diffusion anisotropy can be measured using MRI (34) 
(35-37). Thus, despite the fact that increases in myelin are temporally correlated with increases in 
diffusion anisotropy, structures other than the myelin sheath must be contributing to diffusion 
anisotropy (38). This is an important point, because there is a common misconception that the 
degree of diffusion anisotropy can be used as a quantitative measure or "stain" of myelin content, 
when, in reality, no such simple relationship exists. 

7. Concluding Remarks
DT-MRI provides new means to probe tissue structure at different levels of architectural 
organization. While experimental diffusion times are associated with water molecule 
displacements on the order of microns, these molecular motions are ensemble-averaged within a 
voxel, and then subsequently assembled into multi-slice or 3-D images of tissues and organs. Thus, 
this imaging modality permits us to study and elucidate complex structural features spanning 
length scales ranging from the macromolecular to the macroscopic-without the use of exogenous 
contrast agents. New structural and functional parameters provided by DT-MRI, such as maps of 
the eigenvalues of the diffusion tensor, its Trace, measures of the degree of diffusion anisotropy 
and organization and estimates of fiber direction will all help advance our understanding of nerve 
pathways, fiber continuity, and, potentially, functional connectivity in the CNS. 
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