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Motivation: Characterizing water diffusion in its long-time regime is relevant to most medical applications of diffusion MRI. However, this process is
challenging to model even for a one-dimensional structure with semipermeable membranes.

Goal(s): Developing methods that predict the asymptotic instantaneous diffusivity from the bulk diffusivity and the membranes’ locations and

permeabilities.

Approach: We studied the problem theoretically and expressed the instantaneous diffusivity as an infinite sum. An independent numerical scheme
is developed. Several types of disorder in the membranes’ positions were considered.

Results: Our findings show excellent agreement with simulations. Our methods provide an alternative means for studying time-dependent diffusion.

Impact: This report provides an improved understanding of how tissue organization and disorder may affect water diffusivity, thus making it
relevant to diffusion MR studies characterizing tissue microstructure. We also provide methods for readily estimating the instantaneous diffusivity.

Introduction
The water diffusion coefficient is an MR-measurable quantity whose value and time-dependence are influenced by the surrounding medium. Earlier
studies in the porous media literature [1,2] have shown that the short-time evolution of the diffusion coefficient is sensitive to the surface-to-
volume ratio, while its long-time behavior is determined by the tortuosity and size of the structures. In studies aiming to characterize the

microstructure of tissues, the permeability of the membranes is accounted for [3]. Considering the size of the cells, bulk diffusivity of water, and the
timescales afforded by conventional MR measurements, the long-time asymptote of the diffusion coefficient as well as how such long-time behavior
is approached are critical [1,4]. The latter could indicate the type of disorder present [5].
Here, we visit the simplistic one-dimensional model of permeable membranes with random spacings as illustrated in Figure 1.

Methods
We studied the long-time dynamics of the quantity , which is the probability that a particle initially at the origin traverses to position  over a
time interval  (see Figure 2). This quantity is well-represented by a Gaussian at long times [6]. One-half of the time-dependent variance of this

Gaussian is denoted by , which is determined by requiring that the (time- and position-dependent) slope of the Gaussian is adapted to the time
evolution of  by a fitting based on the diffusivity, membrane positions, and the membrane permeabilities. The time derivative of  yields
the instantaneous diffusivity .
We also devised an independent numerical simulation framework, which is summarized in Figure 3. The domain is divided into equal-sized bins, and

the particle concentration profile, which is initially confined to one such bin, is expressed as a vector. The time evolution for a small time-interval is
expressed as a matrix product taking into consideration the possible exchange through the membrane with permeability . Repeated
multiplication by this matrix allows for estimation of the particle distribution at any time.

Results and Discussion
After lengthy derivations, we found that the convergence of the instantaneous diffusivity to its eventual value  [7] is governed by

where  is the bulk diffusivity and  is the mean separation between adjacent membranes. For disordered media, the positions  become
stochastic variables.
To assess whether our analytical derivation and computational framework provide consistent results at long diffusion times, we considered

realizations of system configurations exhibiting hyperuniform disorder, short-range disorder, and strong disorder [5]. Figure 4 illustrates the result
for a particular realization of each of these disorders. As expected, the two methods provide indistinguishable results at long times.
We also considered scenarios involving 200 different membrane realizations for each of the disorder classes. These simulations are compared with

the asymptotic formulas derived, and also with our analytical results. We find excellent agreement between our model and our simulations; the
latter results are shown in Figure 5. The approach of  to  appears to deviate somewhat from the power-law relations in the long-time
regime suggested in the recent literature [5], most notably in the case of hyperuniform disorder. We also studied the variance of the quantity

, which seems to exhibit the same power-law. These findings are obtained by simulations of all disorder classes, and also the

numerical evaluation of the sum above for the case of hyperuniform disorder.

Conclusion
With our approach, we present an easy-to-understand model which predicts the asymptotic instantaneous diffusivity for a one-dimensional

structure with membranes located according to various statistical models. We expect our methods to facilitate the study of mechanisms that
influence the time-dependence of the diffusion process, which ultimately determines the MR signal obtained via different diffusion encoding
gradient waveforms.
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Figures

Figure 1: The one-dimensional space is decorated by a sequence of thin membranes with permeability . The bulk diffusivity of the fluid is . The
th interval, having length , is located between the points  and . Following Novikov et al. [5], the positions of the membranes are either

regular or they belong to one of the following classes: hyperuniform disorder, short-range disorder, and strong disorder.

Figure 2: The distribution  of the position of a particle, initially at the origin (a), has an approximately Gaussian distribution  at long
times (b). The derivative of its halved variance  yields the instantaneous diffusivity. We account for the permeability condition at the interfaces by

matching the jumps of the piecewise linearized  and its Gaussian approximation  when we consider an interval of mean separation .

Figure 3: The simulation framework developed to provide an alternative for the estimations of the long-time behavior. At each (small) time step, the
probability of the particle leaks to the neighboring bins. If a membrane is to be crossed, this probability is reduced. This evolution can be expressed

as a matrix–vector multiplication, with the matrix being tridiagonal. The distribution at any point in time is computed via repeated multiplications.

Figure 4: The convergence of the instantaneous diffusivity to its long-time value obtained through two independent methods. The dotted portions of
the curves indicate negative values before taking the absolute values.  indicates the residence time. The behavior is dictated by the

dimensionless parameter , which we have set to 1.
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Figure 5: Left: The approach of the instantaneous diffusivity to its long-time value for 200 realizations of each of the disorder classes considered.
Also studied is the variance of the deviation of  from , which is consistent with power-laws reported in the literature [5].Dinst D∞
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