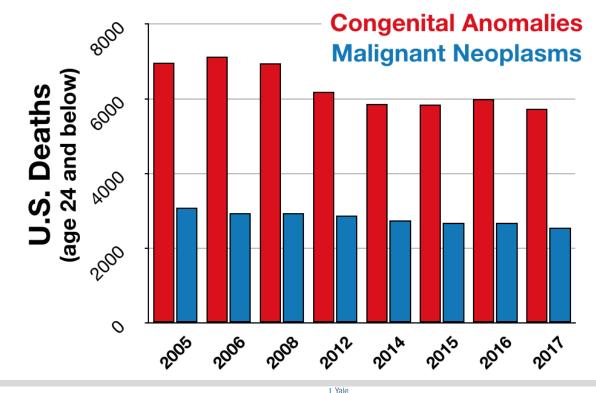
Rare Pediatric Diseases are common and demand mechanism discovery to understand the disease process

Voice of the Patient – NIH October 2019

Mustafa Khokha, MD Director, Pediatric Genomics Discovery Program Associate Professor, Yale University School of Medicine

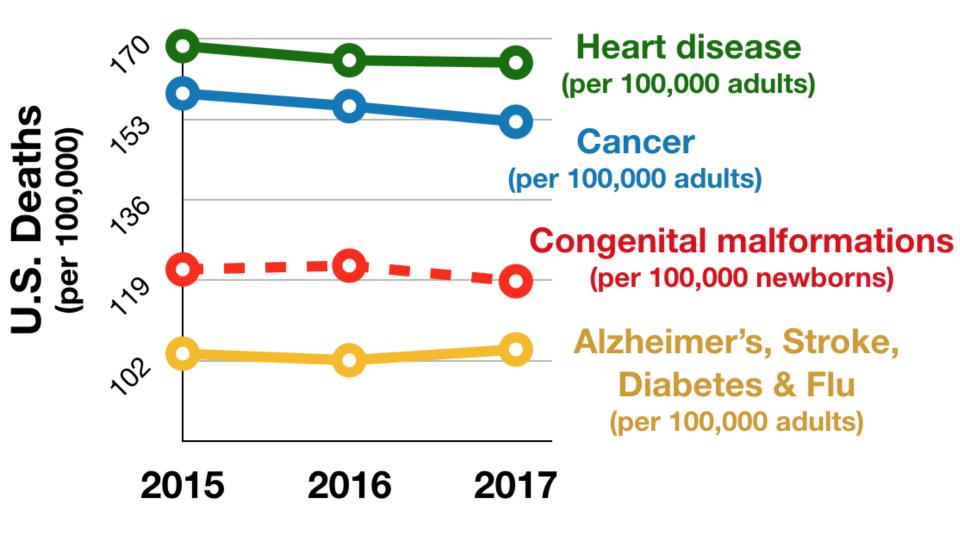
Yale Medicine


Yale NewHaven Health Yale New Haven Hospital

Yale school of medicine

Impact of Rare disorders/Birth Defects

- Combined, rare disorders are surprisingly common
 - 2% of population
 - 10% of hospital discharges
- Birth defects #1 cause of infant mortality in the US



NewHaven

Yale New Haver

Health

Impact of Rare disorders/Birth Defects

Yale NewHaven

Yale New Have

Health

Yale school of medicine

Impact of Birth Defects

- In each age category
 - Birth defects are top 3 cause of death
 - In first decade of life more children die due to birth defects than any other cause
 - Structural birth defects
 - Rare disorders life-threatening
- Genetic basis generally unknown
- Rare disease/Birth Defects individually are very rare – COMBINED – highly common and the major cause of childhood death

Rank	<1	1-4	5-9			
1	Congenital Anomalies 4,580	Unintentional Injury 1,267	Unintentional Injury 718			
2	Short Gestation 3,749	Congenital Anomalies 424	Malignant Neoplasms 418			
3	Maternal Pregnancy Comp. 1,432	Malignant Neoplasms 325	Congenital Anomalies 188			
4	SIDS 1,363	Homicide 303	Homicide 154			
5	Unintentional Injury 1,317	Heart Disease 127	Heart Disease 75			
6 Placenta Cord. Membranes 843		Influenza & Pneumonia 104	Influenza & Pneumonia 62			
7	Bacterial Sepsis 592	Cerebro- vascular 66	Chronic Low. Respiratory Disease 59			
8	Circulatory System Disease 449	Septicemia 48	Cerebro- vascular 41			
9	Respiratory Distress 440	Benign Neoplasms 44	Septicemia 33			
10	Neonatal Hemorrhage 379	Perinatal Period 42	Benign Neoplasms 31			

Why study rare disorders?

- So why study?
 - Rare disorder Impacts a single family, handful of families
 - Combined they are very common 1 in 10 Americans
- Huge impact on child health
- physicians struggle to make correct diagnosis, patients respond unpredictably to therapy
 - Families frustrated, isolated, desperate
 - Why did this happen? What is going on?
 - Will this happen to my next child?
- OPPORTUNITY

Extraordinary Opportunity

- Likely genetic basis for these disorders
 - Rarity
 - Locus heterogeneity
 - Serious illness (life-threating disease)
 - Standard genetic strategies for gene discovery are limited
- DNA sequencing
 - Inexpensive
 - Identify candidate genes efficiently
 - Transforms our insight into disease pathogenesis

Combine to make pedigrees or multiple allele discovery unlikely

Sequencing is not enough

- Novel Gene discovery ?pathogenesis
- 20,000 genes in our genome
 - Established causes of disease (25%)
 - No previous association with disease (75%)
- Understanding how the gene causes disease powerful
 - Understand gene function understand disease process
 - Creates opportunities to tailor diagnostics and therapy based on genotype
 - Predict complications, outcome

Three remarkable opportunities - Today

- Opportunity to convert descriptive diagnosis to molecular diagnosis
- Opportunity to discover new biology
- Opportunity to return these results to families desperate for answers

From patients, to fundamental science, to answers for families

The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality

Marko T. Boskovski¹*†, Shiaulou Yuan¹*, Nis Borbye Pedersen², Christoffer Knak Goth², Svetlana Makova¹, Henrik Clausen², Martina Brueckner¹ & Mustafa K. Khokha¹

CellPres

RAPGEF5 Regulates Nuclear Translocation of β -Catenin

John N. Griffin,^{1,2} Florencia del Viso,¹ Anna R. Duncan,¹ Andrew Robson,¹ Woong Hwang,¹ Saurabh Kulkarni,¹ Karen, I. Liu ² and Mustafa K. Khokha^{1,3,*}

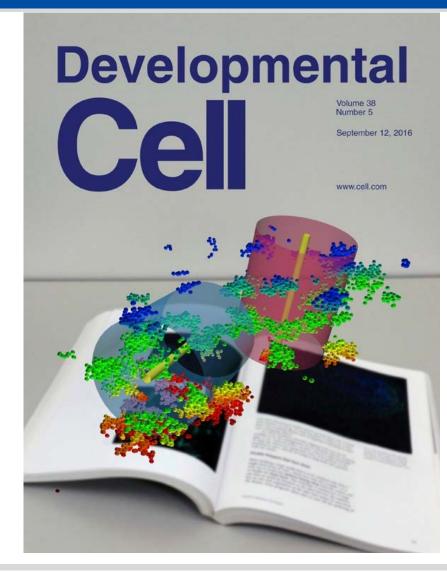
Developmental Cell Article

WDR5 Stabilizes Actin Architecture to Promote Multiciliated Cell Formation

Saurabh S. Kulkarni,^{1,2,3} John N. Griffin,^{1,2,3} Priya P. Date,^{1,2,3} Karel F. Liem, Jr.,² and Mustafa K. Khokha^{1,2,3,4,*}

CellPress

Developmental Cell Article

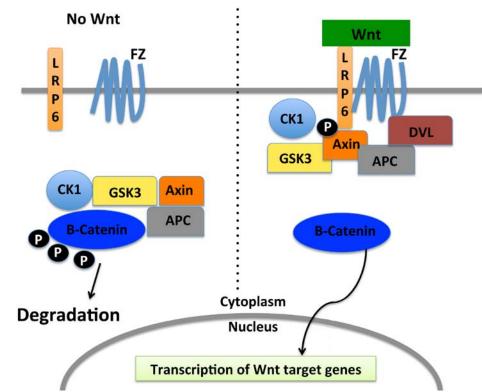

doi:10.1038/nature12723

Developmental Cell

Congenital Heart Disease Genetics Uncovers Context-Dependent Organization and Function of Nucleoporins at Cilia

Yale school of medicine

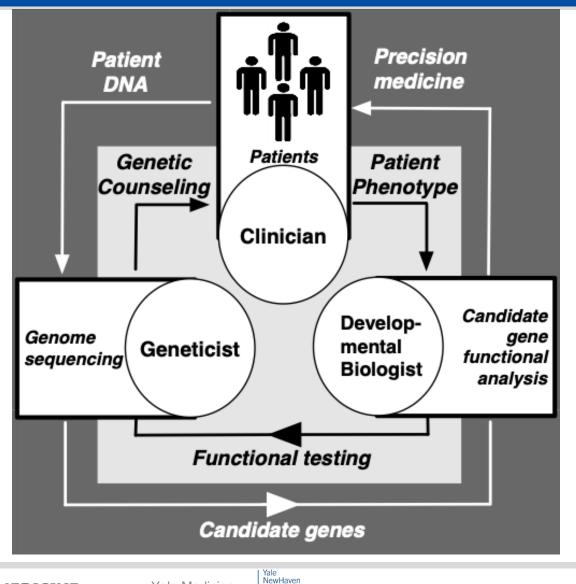
Florencia del Viso,^{1,4} Fang Huang,^{2,3,4} Jordan Myers,² Madeleine Chalfant,² Yongdeng Zhang,² Nooreen Reza,¹ Joerg Bewersdorf,² C. Patrick Lusk,^{2,*} and Mustafa K. Khokha^{1,5,*}


Yale Medicine

Cell²ress

Patient driven discovery -> Future therapy

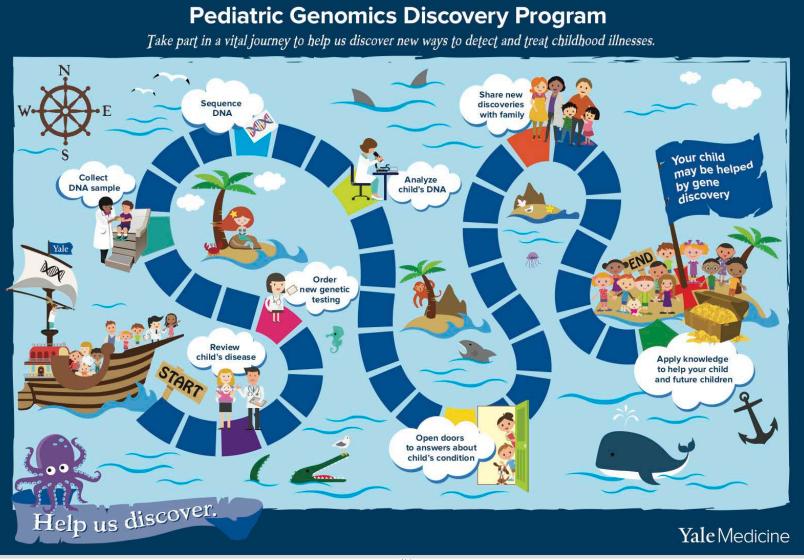
- <u>Colorectal Cancer</u>
- 3rd most common
- 9.4 million people in 2015
- 65% survival
- 832,000 deaths
- <u>Colorectal Cancer + Wnt Pathway</u>
- 90% of Colon cancer
- APC, Axin1/2, β -catenin
- Stabilize β-catenin
- Blocking mechanism β-catenin nuclear entry – <u>no one knows how</u>



Return results to patients

- Rare disorders poor understanding of pathophysiology, parents become the experts frustration, desperation
- Birth defects diagnosis is descriptive not molecular
- DNA Sequencing
 - Why did this happen? What is going on?
 - Candidate genes may explain disease process
 - Will this happen to my next child?
 - Evaluate potential risk to next child based on the genetics
- Traditionally Basic science offers therapies in the future
- Sequencing Era basic science can immediately provide answers

Clinical – Basic Science Infrastructure


Health Yale New Haven

Yale school of medicine

Yale Medicine

Pediatric Genomics Discovery Program

Yale school of medicine

Yale Medicine

SLIDE 12

- Extraordinary opportunity for rare disease/birth defects research
- To capitalize on this opportunity: Must address a number of problems

PROBLEM – Impact Underappreciated

- Impact of Birth Defects/Rare Disease on children is massive
- **Underappreciated** by the general public
- Resources not proportional to the impact
- Why?
 - Premature infant in the palm of one's hand
 - Unmistakable look of child with cancer
 - No heart tugging image of birth defect child "cripple"
- Solution Public education of the impact
 - Write in lay press
 - Alert our legislators, policy makers

PROBLEM – Rare diseases are rare

- So why study?
 - Impacts a single family, handful of families
 - Collectively common
- Rare disorders/birth defects
 - Families/Physicians desperate for answers
 - Unsatisfying descriptive diagnoses not molecular
- SOLUTION change the research metric. Research to help patients today return of results (even research results) to patients
- SOLUTION Emphasize Patient driven gene discovery.
 - Patient as powerful motivator to "new" biology
 - Patient phenotype as powerful guide for pathogenesis discovery
 - Connect clinicians and basic scientists.
- To realize this potential study patient derived genes need disease models

Convert Clinical/Candidate Gene -> Basic Science

- Models for human disease
- Throughput for DNA sequencing is FAST...
- Create disease Models
 - Mouse models throughput and cost
 - Non-mammalian models
 - Xenopus F0 CRISPR Gene to phenotype in 5 days
 - As similar to human without sacrifice on throughput lungs, limbs
 - Annotated genome, Model Organism Database: Xenbase
 - National Xenopus Resource animal stock center
 - Patient derived cells animal models offer 3D architecture to model human disease. Test specific hypotheses in patient cells.

Convert Clinical/Candidate Gene -> Basic Science

- Fund studies of patients with rare disorders
 - Fund proposals to recruit patients and sequence GM KidsFirst
 - Fund proposals to study candidate genes from patient driven gene discovery – basic science of novel genes
- To capitalize on <u>return to patient</u> create basic science-clinical infrastructure
- PROBLEM#1: Diverse expertise: patients are seen by clinicians, exome sequencing requires bioinformatics, modeling of human disease and mechanism discovery requires basic scientists
- PROBLEM#2: Hypothesis generating not hypothesis driven
 - Grant proposal recruit patients (broad), find candidate genes (unknown until patients recruited), discover cool biology that impacts patients (unknown until sequencing)

PROBLEM#1: Diverse Expertise

- SOLUTION: funding to emphasize collaboration
- Preliminary grants to bring complementary groups together and demonstrate that they can successfully work together
- Fund cooperative grants with multi-pronged approach
 - Clinician Patient recruitment
 - Geneticist/Bioinformatics Sequencing/Candidate gene analysis
 - Basic Scientists Candidate gene screening/Mechanism discovery
 - R01s/PPG
- Foster training of physician-scientists uniquely situated to simplify "three body problem"
- Productivity metric papers & <u>return to patients</u>

PROBLEM#2: Hypothesis generating not hypothesis driven

- Solution: Specialized study sections/Institutes prioritize these applications.
- Patient Driven Gene Discovery -> Basic Science
- Recruit patient -> Identify Candidate Gene -> screen in model systems -> Patient Phenotype -> Investigate mechanism
- Dependent Aims/"open ended"/unlikely to lead to mechanism "risky"
- Not risky -> our group and many others
- Emphasize the impact of rare disorders
- Emphasize the impact directly on patients return of results

Summary

- Birth defects/rare disorders huge problem
- Rare disease common collectively
- Gene identification is efficient DNA sequencing
- Opportunity
 - Transform descriptive diagnoses to molecular understanding
 - Return of clinical/research result to patients
 - Exciting basic research avenues
- Public awareness impact
- Collaborative infrastructure
- Model organisms databases, stock centers
- Special Study sections/Institute priority

Acknowledgments

Yale NewHaven Health Yale New Haven

Yale New Haven Hospital

Rick D'Aquila Cynthia Sparer

Yale Medicine

Paul Taheri Kim Moriarty Andrew Golus Connie Branyan

Yale school of medicine

Carolyn Slayman (late) Cliff Bogue George Lister Antonio Giraldez

NIH – NHLBI/NICHD Sara and Jeffery Buell

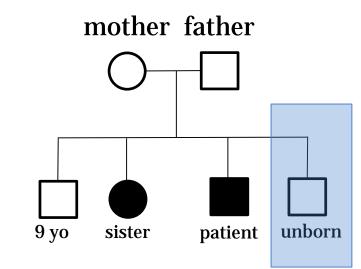
Rare disease is devastating to families – hope from gene discovery

Voice of the Patient – NIH October 2019

Kendra Haifley

Yale Medicine

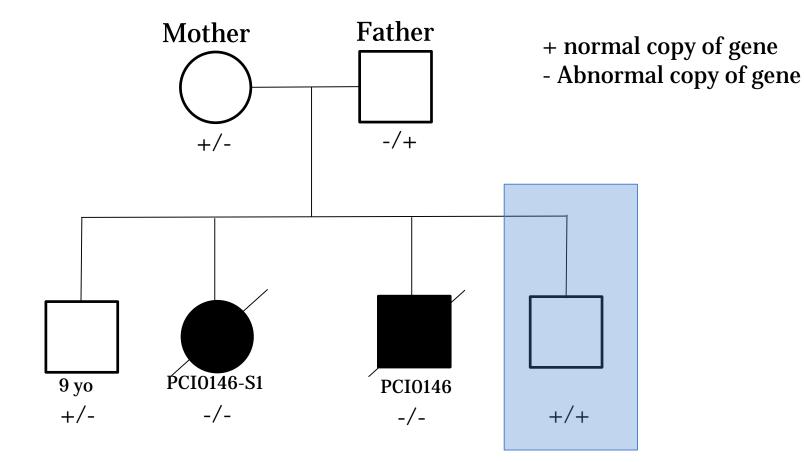
Yale NewHaven Health Yale New Haven Hospital



Lung disease – in infancy

Onset of symptoms for proband and affected sib was around 1 year.

- interstitial lung disease, pulmonary hypertension
- mild motor delay
- Path report of proband: lung alveolar proteinosis, pectus excavatum, Trach, GJ tube
- Oldest sib is 9 yrs and well, mother pregnant fetus well to date
- Single family with disease with no known explanation
- Why study?


Variants in Exome Sequencing

Pos.	Gene		Vari ant	Int ole ran ce	MAF ExAC _All	MAF ExAC _NFE	C A D D	SI FT	PP H	Effe ct scor e	Fat her	Mot her	S1
2:114500349_C /T	SLC35F5	solute carrier family 35, member F5	E224 K	53.12 %	0.0037	0.0058	20.6	т	В	1	Het	Ref	Ref
2:114508135_ G/A	SLC35F5	solute carrier family 35, member F5	T95I	53.12 %	0	0	21.1	т	Ρ	2	Ref	Het	Het
3:49679930_C/ T	BSN	bassoon presynaptic cytomatrix protein	P288 L	0.49%	0.0035	0.0052	18.3 3	т	В	2	Het	Ref	Het
3:49700582_G/ A	BSN	bassoon presynaptic cytomatrix protein	R366 4Q	0.49%	0.0029	0.0047	22.5	D	D	3	Ref	Het	Ref
16:784797_6/ A	NARFL	nuclear prelamin A recognition factor-like	R172 X	91.39 %	0	0	36	•		stopga in	Ref	Het	Het
16:786403_ \ /C	NARFL	nuclear prelamin A	-	91.39 %	0.0001	0				0	Het	Ref	Het

Yale school of medicine

Impact on families

