

Toward *In Vivo* Imaging of Cortical Architecture and Function

Peter Basser Section on Quantitative Imaging and Tissue Sciences (SQITS), NICHD, NIH

SQITS Members (DIR-Funded)

Eunice Kennedy Shriver National Institute of Child Health and Human Development

NIF

Section Goals

- Discover fundamental structure/function relationships in the nervous system (and in ECM)
- Use this knowledge to invent, develop, and translate novel *in vivo* quantitative imaging 'biomarkers' to make key 'invisible' biological processes and features 'visible'.

New Developments--New Directions

Microdynamic Imaging

Functional Imaging Microstructure Imaging

Anisotropy in Diffusion-Weighted MRI*

MICHAEL E. MOSELEY, JOHN KUCHARCZYK, HALEH S. ASGARI, AND DAVID NORMAN

Department of Radiology, University of California, San Francisco, California 94143

Received February 1, 1991

MR Imaging of Anisotropically Restricted Diffusion of Water in the Nervous System: Technical, Anatomic, and Pathologic Considerations

Joseph V. Hajnal, Mark Doran, Alasdair S. Hall, Alan G. Collins, Angela Oatridge, Jacqueline M. Pennock, Ian R. Young, and Graeme M. Bydder

Journal of Computer Assisted Tomography

15(1):1-18, January/February

© 1991 Raven Press, Ltd., New York

FIG. 5. Normal volunteer (male, 31 years old): 256×256 coronal SE $\approx 1,500/130$ (a), SE $\approx 1,500/130/1,0,0/44/550$ (b), SE $\approx 1,500/130/0,1,0/44/550$ (c), and SE $\approx 1,500/130/0,0,1/44/550$ (d) images. Ascending and descending projection fibres are of higher signal intensity in (b) and (c) than in (d). Tracts that run anteroposteriorly appear low in signal intensity on (c) but higher on (b) and (d). The trigeminal nerves are seen in (b) and (d) (arrows) but not on (c).

Basser, P.J., Mattiello, J., and LeBihan, D. (1994). Biophys. J. 66:259-267. Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., and Chiro, G. (1996). Radiology 201:637-648. https://www.youtube.com/watch?v=1_BeCeDak3w

DTI "Pipeline"

Estimate **D** from Diffusion Weighted MRIs using: $A(\mathbf{b}) = A(\mathbf{0})\exp(-\mathbf{b} : \mathbf{D})$

D

Non-Diffusion Weighted MRI, *A*(**0**)

Three eigenvalues (principal diffusivities)

Three corresponding eigenvectors (principal directions)

"Mean ADC" Map

Ellipsoid Maps/Tracts

Trace(**D**) delineates (disambiguates) infarcted areas better than individual ADCs in Ischemia

<D> = Trace(**D**)/3

"Trace ADC", "Mean ADC" "Orientationally-averaged ADC", "ADC", "mADC" ...

Experimental validation in cats first shown in van Gelderen P., et al. 1994. Magn. Reson. in Med. 31:154-163.

"Drilling Down into the Voxel": Image Resolution vs Length Scale Probed

- Increase MRI voxel resolution.
- "In Vivo MRI Histology": Use low-resolution in vivo MRI data and physical/mathematical models to obtain microscopic scale features that characterize the morphology, structure and/or architecture of cells and tissues.
 - Cell orientation
 - Cell shape
 - Cell size
 - Cell size distribution (e.g., axon diameter distribution or ADD)
 - Extracellular matrix (ECM) fraction
 - Intra-axonal fraction
 - Fractal dimension ...

Goal

To parcellate the human cortex (and other brain areas) *in vivo* in about 45 minutes.

Fig.1 Santiago Ramon y Cajal at work (From Cajal Institute; http://www.cajal.csic.es/).

Cortical surface

Sub-cortical white matter

Mean Apparent Propagator (MAP) MRI

'glyphs' show size, shape and orientational features of the average propagator

Mean Apparent Propagator (MAP) MRI

Clinical Translation of Mean Apparent Propagator (MAP) MRI

Alexandru Avram

Avram AV, Sarlls JE, Barnett AS, Özarslan E, Thomas C, Irfanoglu MO, Hutchinson E, Pierpaoli C, Basser PJ. 2016. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure. Neuroimage 127:422-34.

Developing new MRI Contrasts: Multi-dimensional relaxometrydiffusometry MRI

- 2D NMR relaxometry/diffusometry methods have been used in porous media NMR applications.
- Because of vast data requirements and complexity in reconstructing 2D spectra, spectral MRI has been infeasible—nigh impossible.
- We have recently invented and developed p(T₁,T₂), p(mADC,T₂), p(mADC,T₁), ... MRI to reveal 'invisible' components and compartments within tissues and cells.

Examples of 2D Correlation NMR Spectroscopy

48,000 data points!

Hürlimann et al., 2003

$p(T_2,D)$ NMR

240,000 data points!

 $p(T_2,T_1)$ NMR

2D Relaxometry with 'Compressed Sensing'

Efficient 2D MRI relaxometry using compressed sensing Ruiliang Bai^{a,b}. Alexander Cloninger^c. Woiciech Czaia^d. Peter I. Basser^{a,*} Journal of Magnetic Resonance 255 (2015) 88–99

A *Milton Bradley*[™] Game

BATTLESHIPS

By Wei-Hwa Huang

This is a puzzle version of the classic pencil-and-paper game. Place one cruiser (three grid cells, as shown), two destroyers (two cells) and three submarines (one cell) in the grid horizontally and vertically so that no two vessels touch, not even diagonally. The numbers at the side of the grid tell you how many cells in the corresponding rows and columns are occupied by vessels.

The New York Times, Puzzles, "A little variety" 03/06/16; Editor: Will Shortz

Strategy changes when you know "opponent's" marginal distributions!

Rows and columns show partial sums from which marginal distributions can be calculated

Marginal Distribution Constrained Optimization (MADCO) for multispectral imaging

Dan Benjamini

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

MRI / Immunohistochemistry Correlation

Neurofilaments (NF)

Myelin oligodendrocyte glycoprotein (MOG)

MRI and histology images are co-registered

Multivariate linear regression is used to correlate MRI and histology imaging data in ROIs (with optical density images used as the independent variables)

MRI / Immunohistochemistry Correlation

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Apparent Volume Fraction MRI maps show distinct water microenvironments

Benjamini and Basser, Neuroimage, 2017; http://www.sciencedirect.com/science/article/pii/S1053811917307814

Human Cortical Tissue Parcellation

First 2D relaxometry/diffusometry MRI data obtained in human brain tissue (unpublished) in BA17 from CNRM Neuropathology colleagues Drs. Perl, Rhodes and Iacono

Unsupervised Cortical Parcellation

Segmentation of GM and WM Clustering into 6 Cortical Layers Clustering of Cortical Areas

Shinjini Kundu Unpublished Data

3D segmented tissues, 2D Euclidean, slice 28

bkgd bkgd WM WM GM 1 GM 1 GM 2 GM 2 GM 3 GM 3 GM 4 GM 4 GM 5 GM 5 GM 6 GM 6

3D segmented tissues, 2D Euclidean, slice 29

Unsupervised Cortical Parcellation

Segmentation of GM and WM Clustering into 6 Cortical Layers Clustering of Cortical Areas

Shinjini Kundu Unpublished Data

3D segmented tissues, 2D Euclidean, slice 32

3D segmented tissues, 2D Euclidean, slice 33

Unsupervised Cortical Parcellation

- Segmentation of GM and WM
- Clustering into 6 Cortical Layers
- Clustering of Cortical Areas

Shinjini Kundu Unpublished data

3D segmented tissues, 2D Euclidean, slice 34

3D segmented tissues, 2D Euclidean, slice 35

Clinical *p*(T₁,mADC) Mapping

A.V. Avram, J.E. Sarlls, and P.J. Basser, *Estimating intravoxel joint T1-mean diffusivity probability distributions using a clinical MRI scanner* (in preparation)

DiffSim Monte-Carlo Modeling Framework

Adam Bernstein

AS Bernstein; B Regner; GT Baxter; E Özarslan; PJ Basser; TJ Sejnowski; LR Frank, Insights into double pulsed field gradient experiments in non-ideal geometries using Monte-Carlo simulations, submitted, JMR 2018

Explore Novel Functional MRI (fMRI) Mechanisms and Image Contrasts

Can we discover new mechanisms that are more direct, sensitive, and specific than conventional Blood Oxygen Level Dependent (BOLD) fMRI?

'Direct' fMRI via measuring changes in water diffusion?

Claim: Functional diffusion MRI (fDMRI) detects microstructural changes associated with neuronal activity

fDMRI vs conventional BOLD fMRI during *in vivo* (human) visual stimulation.

Authors reported fDMRI:

----- D. Le Bihan, et al., PNAS, 2006

- Is more selective and accurate in localizing active brain areas
- Possesses faster temporal response
- Is more directly correlated with neuronal activity

A novel fMRI test system providing simultaneous calcium fluorescence imaging and MR acquisition in neuronal tissue and cell cultures

Stability of MR and Calcium Recordings: no systematic artifacts

1.5-hour recording:

- Both MR and optical recordings are stable for several hours.
- Number of neurons showing spontaneous activity decreases after several hours.

Summary of Findings

Bai R, Stewart CV, Plenz D, and Basser PJ. 2016. Assessing the sensitivity of diffusion MRI to detect neuronal activity directly. Proc Natl Acad Sci JSA 113(12):E1728-E1737

Transmembrane Water Cycling Has Active and Passive Contributions!

$$k_{io} = k_{io}(\mathbf{a}) + k_{io}(\mathbf{p}),$$

Active Passive

Bai R, Springer CS, Plenz D, and Basser PJ. 2018. Fast, Na+/K+ pump driven, steadystate transcytolemmal water exchange in neuronal tissue: A study of rat brain cortical cultures. Magn Reson Med 79:3207–3217. doi:10.1002/mrm.26980.

Active Transmembrane Water Cycling and its Relation to Neuronal Activity

Bai R, Springer Jr, CS, Plenz D, Basser PJ, Brain Active Trans-Membrane Water Cycling Measured by MR Is Associated with Neuronal Activity, MRM, (in press, 2018)

Active Transmembrane Water Cycling and its Relation to Neuronal Activity

Bai R, Springer Jr, CS, Plenz D, Basser PJ, Brain Active Trans-Membrane Water Cycling Measured by MR Is Associated with Neuronal Activity, MRM, (in press, 2018) Active Transmembrane Water Cycling and its Relation to Neuronal Activity

Can this finding lead to a novel fMRI method?

Can water cycling be measured, monitored, and mapped without using contrast agents?

Summary

Our Brain Parcellation and Functional MRI (fMRI) research address significant, fundamental problems, and NICHD mission-critical challenges.

Our novel MRI 'stains' and 'contrasts' that are making 'invisible' processes and cell and tissue components 'visible', are grounded in recent scientific and technological breakthroughs in our laboratory.

Collaborators

"Blackboard"

Dan Benjamini Sinisa Pajevic (CIT, NIH) Shinjini Kundu (JHU) Evren Özarslan (LU, Sweden)

"Bench"

Michal Komlosh (CNRM) Nathan Williamson Rea Ravin (Celoptics) Ruiliang Bai (ZIINT, PRC) Ferenc Horkay

"Biological Models"

Dietmar Plenz (NIMH) Beth Hutchinson (NIBIB/CNRM) Charles Springer (UO) Bernard Dardzinski (USUHS) Neuropathology Core (CNRM) Frank Ye (NIMH)

"Bedside"

Alexandru Avram (NIBIB) Joelle Sarlls (NINDS/NMRF) Adam Bernstein (UA) Carlo Pierpaoli (NIBIB)

http://science.nichd.nih.gov/confluence/display/sqits/home

Thank You!

Non-DIR Funded Section Members

NAC

Biomedical Imaging

BRAIN

NATIONAL INSTITUTES OF HEALTH

SQITS' Recent Highlights

- Developed new 'stains' and 'contrasts' for brain microimaging (μMRI)
- Pioneered compressed sensing for 2D diffusometry/relaxometry MR
- Invented, implemented, and tested MADCO ('Battleship') method
- Invented and developed 2D diffusometry/relaxometry/exchange MRI
- Demonstrated their clinical feasibility
- Successfully translated MAP-MRI clinically
- Designed, built, and tested novel tandem MR/fluorescence microscope
- Used it to evaluate validity of functional diffusion MRI (fDMRI)
- Discovered evidence of active water cycling in neurons
- Discovered active water cycling increases during neuronal excitation
- Proposed active water cycling as a potential fMRI mechanism
- Developed quantitative collagen MRI method for ECM applications
- Developed novel biomimetic cartilage model
- Rolled out TORTOISE v.3 for quantitative diffusion MRI applications

High-Resolution White Matter Mapping

Probing Different Length Scales "from Macro to Nano"

R24 BRAIN Initiative "DREAM TEAM"

Mark Hallett, NINDS Motor Control

Sini Pajevic, CIT Comp. Neuroscience

Doug Fields, NICHD Glial Biology

Zhen Ni, NINDS Motor Control

Adam Bernstein Michael Curry Giorgio Leodori Joelle Sarlls Amber Simmons

Alexandru Avram, NIBIB Clin. MRI, modeling

Richard Coppola, NIMH MEG

National Institute of Biomedical Imaging and Bioengineering

Creating Biomedical Technologies to Improve Health

Eunice Kennedy Shriver National Institute of Child Health and Human Development

R24 BRAIN Initiative: Measuring the "Latency Connectome"

Perspective

Glial Regulation of the Neuronal Connectome through Local and Long-Distant Communication

R. Douglas Fields,^{1,*} Dong Ho Woo,¹ and Peter J. Basser²

¹Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA

²Section on Tissue Biophysics and Biomimetics, Program on Pediatric Imaging and Tissue Sciences, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA

Neuron, 2015 Apr 22;86(2):374-86. doi: 10.1016/j.neuron.2015.01.014

Latency Maps in Telecom Applications

CITY PAIRS	Atl												http://ipnetwork.bgtmo.ip.att.net/p													
Austin	25	5 Aus								ws/network_deldy.nt										I						
Cambridge	29	54	4 Cam								all															
Chicago	26	33	26	Chi					Ave	ora	an ao'															
Cleveland	19	40	20	8	Cle				2	5 m	ye.															
Dallas	18	11	46	22	29	Dal				5 11	13															
Denver	38	31	48	21	28	21	Den																			
Detroit	22	43	24	8	4	33	28	Det																		
Houston	20	6	49	28	34	6	26	38	Hou																	
Indianapolis	27	47	28	6	8	37	27	13	42	Ind																
Kansas City	27	21	32	13	19	10	15	19	16	18	Kan															
Los Angeles	50	40	79	62	68	32	41	69	35	67	42	LA														
Madison	45	39	42	6	32	29	36	32	34	11	18	67	Mad													
Nashville	8	29	31	18	11	19	39	15	24	19	18	50	27	Nas												
New Orleans	13	13	42	38	31	13	33	34	8	39	23	43	41	21	NO											
New York	24	49	6	21	15	41	42	19	44	27	27	82	37	26	36	NY										
Orlando	11	27	40	36	30	27	48	33	22	37	37	59	45	19	15	35	Orl									
Philadelphia	22	47	10	19	11	40	39	15	41	19	25	79	35	22	34	4	33	Pa								
Phoenix	42	30	68	44	51	23	43	54	25	59	32	11	50	40	32	63	46	62	Phx							
San Antonio	25	10	54	36	37	8	28	40	5	41	18	31	36	26	12	48	26	48	20	SA						
San Diego	46	37	75	51	58	29	45	61	32	56	39	4	57	47	39	69	56	69	8	27	SD					
San Francisco	60	51	78	51	58	44	30	58	46	56	45	11	65	62	53	72	68	69	22	41	15	SF				
St. Louis	20	31	27	9	17	20	21	17	25	15	6	52	15	12	32	22	30	20	42	27	49	50	StL			
Seattle	73	65	73	47	54	54	34	54	59	53	49	35	72	65	67	68	81	65	45	62	38	24	57	Sea		
Washington	19	44	11	22	14	32	42	18	39	22	22	68	32	25	31	6	30	3	53	43	60	72	17	69	Was	

Mean Latency Matrix

Mean Latency Matrix

- The estimated mean latencies along all white matter pathways are collated into a Mean Latency Matrix (MLM)
- The MLM may provide important clinical and biological information about large scale brain network dynamics at the *millisecond* time-scale

Length and Time Scales of Different Neurophysiological and Functional Imaging Methods

GLOSSARY: Optical: near-infrared spectroscopy EEG: electroencephalography; MEG: magnetoencephalography PET: positron emission tomography SPECT: single-photon emission computed tomography

Whole Brain Functional MRI (BOLD fMRI):

- spatial resolution: 1 5 mm
- temporal resolution: 1 1000 sec.
- does not provide a direct measure of neural excitation

Old and New Diffusion MRI "Stains"

Özarslan E, Koay CG, Shepherd TM, Komlosh ME, Irfanoglu MO, Pierpaoli C, and Basser PJ. (2013) Mean Apparent Propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. Neuroimage 78:16-32

AxCaliber MRI: A Method to Measure the Axon Diameter Distribution (ADD) in White Matter from Diffusion MRI Data

Y. Assaf, D. Barazany, T. Blumenfeld, G. Levine, Y. Yovel, P.J. Basser

hw

10

9

Department of Neurobiology The George S. Wise Faculty of Life Sciences Tel Aviv University

AxCaliber MR Validation: Optic and Sciatic Nerve

Barazany D, et al., Brain, 2009

Anisotropic Diffusion: Apparent Propagators Reconstructed in Human Hippocampus

Ramón y Cajal, 1911. Histologie Du Systeme Nerveux De L'Homme Et Des Vertebretes. A. Maloine, Paris.

Apparent Propagators Reconstructed in Macaque Brain

DTI

1 N X X X 📈 **X.** X. <u>76 🔁</u> <u>1 72 a</u> 💋 🗞 🖄 🚺 🗞 🛣 (1) (2) (2) ነ 🍇 🗠 😂 S & S & 2 **\ 🗞 🗠 X** <u>ta an 21</u> 💐 🔊 🛤 22 # 22 × × × 22.2 🐜 💓 🗡 50 👀 👀 Yi N N N N S 27 🛰 🕱 🐕 x x x **1**

MRI data acquired by Frank Ye and David Leopold * Özarslan et al.

Toward Cortical Parcellation via MAP-MRI

Evren Özarslan and Okan Irfanoglu